
1

Robotics With the XBC

Controller
Session 7

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

#2

Learning Goals

 The student will learn about BEMF and
the usage of the BEMF encoders on the
XBC. In addition the student will learn to
use the multitasking capabilities of the
XBC and learn about the engineering
process. The student will learn the
advantages and disadvantages of an
incremental design process.

 The student will combine all these
elements into the implementation of a
robot that chases and grabs orange balls.

#3

BEMF Encoders
 Back Electro Motive Force (BEMF)

• As a DC motor spins it generates a Voltage, or EMF (It
follows from Faraday’s Law for changing magnetic
fields) .

• This EMF opposes the applied voltage.

• The level of EMF is proportional to the velocity of the
motor and thus reduces the net applied voltage as the
motor speeds up.

• If we momentarily remove the applied voltage we can
read this EMF and have a measure of the velocity of
the motor.

• Since velocity is position/time, we can get position
data from the motor by adding up EMF values at small
time intervals.

 Using BEMF encoders allows very precise
control over our robots movements.

#4

Seeing BEMF Encoder Data

 See on screen demonstration on
how to view encoder data on the
XBC in real-time.

#5

Basic BEMF Motor Functions
 long get_motor_position_counter(int motor)

 This function tells you the current position of the motor.

 void set_motor_position_counter(int motor, long value)

 This function sets the motor counter to the position you
specified without moving the motor. This is usually used
to set the number of the position to zero or another
number that is easy to work with.

 void clear_motor_position_counter(int motor)

 This function resets the motor counter to zero.

#6

Movement Functions

 void move_at_velocity(int motor, int velocity)
 This function will attempt to move the specified motor

at the velocity between -1000 and 1000 pulses per
second. You can also use the shorthand -

 void mav(int motor, int velocity).

 void move_to_position(int motor, int speed,
long goal_pos)
 This function will move the motor to the position goal

specified at the speed chosen by the user. Note that
we call it ‘speed’ because it is always positive;
the polarity of the position goal determines
direction. This also works with the shorthand -

 mtp(int motor, int speed, long goal_pos).

#7

More Movement Functions

 void move_relative_position(int motor, int
speed, long delta_pos)
 This function moves the motor delta_pos (change in

position) units at the specified speed. The shorthand
for this function is -

 mrp(int motor, int speed, long delta_pos).

 void freeze(int motor)
 This function will hold the motor in the current position

until otherwise instructed. (Note that position is
based on BEMF and will drift; do not use for more
than a second or so. The function off(int motor) is
usually better for holding black motors.)

#8

How to Tell If a Motor Is
Done Executing a Command

 int get_motor_done(int motor)
 This function will tell you if the motor is

currently executing a command, returning a
zero if it is and a one if it isn’t.

 void block_motor_done(int motor)
 This function will pause until the specified

motor finishes its current command, so you
can avoid sending commands to a motor
before it finishes the last command.

 This function has a shorthand - bmd(int
motor).

#9

A Simple Example

#define LM 2
#define RM 0
void main()
{ //Move forward for 2 seconds using the

// mav function
mav(LM, 900);
mav(RM, 900);
sleep(2.0);
ao(); // omitted on original slide

}

#10

Using BMD and
get_motor_done

#define LM 2

#define RM 0

void main()

{

//Move forward for 2000 ticks

mrp(LM,900, 2000L);

mrp(RM,900, 2000L);

bmd(RM);

//Move backward for 2000 ticks

mrp(LM, 900, -2000L);

mrp(RM, 900, -2000L);

// Pause until get_motor_done returns a 1

while(!get_motor_done(RM))

{

printf(“motors running”);

sleep(.2); display_clear();

}

}

#11

Tips for Using the BEMF
Encoders

1. In general it is best to NOT run both
motors at full velocity in case one motor
cannot obtain full velocity.

2. Try to match motors by using the BEMF
encoder display to find two motors that
return similar values for a full rotation.

3. Do not forget to use the bmd or
get_motor_done function when using
position functions.

4. The bmd and get_motor_done functions
are not needed for the mav function.

#12

Multitasking

 Allows your XBC to do more than
one thing at a time.

 Extremely valuable in Botball.
 Allows your robot to do tasks in the

background while the main program
runs.

 This saves you time.

 IC make multitasking EXTREMELY
easy.

#13

IC Process information

 Separate processes work in parallel
until they end or are killed.

 Each process that is active gets
50ms of processing time.

 Processes can communicate with
one another by reading and
modifying global variables.

#14

Multitasking functions

 int start_process(<function_name>(<arg1>,
<arg2>, . . .));

 Used to get a process to start running in the
back ground.

 Returns an int that is the process ID of the
process.

 void kill_process(<process_id>);

 Stops the process indicated by process_id.

 defer();

 Causes a process to give up its remaining
process time.

#15

A Practical Botball Example
/*

This is an example of using multitasking in IC

The program will start a process that is designed to move

a servo. It will also move the robot forward WHILE the

servo is being moved in the background.

*/

#define ARM 0 //Servo port of the arm

void main()

{

int pid_arm; // This variable will hold the ID of the raise_arm process

pid_arm= start_process(raise_arm()); // start raising arm in the
background

forward(); // moves us forward while the arm is being moved.

sleep(3.0);

kill_process(pid_arm); //just incase raise_arm isn’t finished

ao();

}

#16

Example Continued

void raise_arm()

{

int position; // a counter to hold our servo position

for (position = 10; position < 180; position+=5) //count from 10 to 180
in 5 step increments

{

set_servo_position(ARM,position); // position our servo

sleep(0.11); // This sleep slows things down a bit

}

}

void forward()

{

motor(0,100);

motor(2,100);

}

#17

The Engineering Process

1. Define the problem and determine
project requirements.

2. Brainstorm solutions.

3. Prototype solution.

4. Test and observe.

5. Determine cause of failings and
brainstorm solutions.

6. Go back to 4 and repeat until finished.

#18

Incremental Design

 Design and test a little at a time.

 Designing an entire solution and then
implementing the whole solution without
testing rarely works.

 Break problem into smaller problems.

 Design and test solutions to the smaller
problems.

 Assemble smaller solutions into working
solution.

#19

Tonight's Challenge

1. You should have the arm built.

2. Using what you know about IC, simple XBC
vision, servos and motor control write a
program that will:

1. Seek out and find an orange ball.

2. Grasp and pick up the orange ball.

3. The solution to last weeks challenge will be
VERY helpful.

4. This is a big challenge, use incremental design!

5. We will add to this challenge later!

#20

Possible Sub-problems to
Solve
1. Go out a fixed distance turn around and return [measure

the repeatability by measuring the end points after
careful positioning of the starting point and direction.]

2. Go out to a ball/tribble at fixed position, about 3 feet
away, and grab it; return to starting point and drop it.
[note that both grabbing and lifting is needed to return
reliably with the object.]

3. Use vision to guide robot to a ball/tribble, about 3 feet
away within the camera FOV, and grab it; return to
starting point and drop it. [Set a color model to respond
only to the target object; use the vision guidance
function from the 6th class to direct the robot. Note the
relation between the y track of a blob and how close it
is.]

